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RESUMO

Esse projeto tem como objetivo analisar e implementar um modelo computaci-
onal que pode ser aperfeicoado para posterior uso na indistria de 6leo e gds para simulacées
do fenémeno de intermiténcia severa (hilly terrain-induced severe slugging) gerada por terreno
inclinado (hilly terrain-induced severe slugging).

O modelo analisado ¢ apresentado, bem como a 16gica da elaboragéo do programa com-
putacional. Dois casos de escoamento bifésico d4gua-ar sdo avaliados como exemplos de casos
em que ocorre € em que ndo ocorre a intermiténcia severa.

Posteriormente, sdo feitas algumas conclusdes quanto a melhorias possiveis de se reali-
zar e também acerca de caracteristicas do fendmeno.



ABSTRACT

This project aims to analyse and implement a computacional model that can be further
improved and utilized by the oil and gas industry as a tool to simulate hilly terrain-induced
severe slugging.

The model as well as the numerical procedure are presented. As examples, two cases of
water-air flow are analysed: one of them leads to steady-state behavior and the other leads to
intermittent behavior.

Finally, some conclusions are done regarding possible improvements in the model and
also about the characteristics of the phenomenon.
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INTRODUCAO

Em uma grande variedade de processos naturais e industriais ha a ocorréncia de escoa-
mentos multifdsicos. Torna-se entdo pertinente buscar compreender melhor como esses fend-
menos ocorrem.

A caracteristica fundamental de um escoamento multifdsico € a distin¢do fisica entre as
fases que o compde. Como cada fase pode diferentes componentes e estar em regimes diferen-
tes de escoamento, sua descri¢do € complexa.

Quando se analisa do ponto de vista das fases que compde o escoamento, um tipo de
particular interesse € o escoamento gis-liquido. A razdo € este ser encontrado com grande
frequéncia na indistria de petréleo, especialmente no transporte através de dutos (pipelines).

O conhecimento dos mecanismos de transporte multifdsico de gés, 6leo e dgua tem se
tornado importante na tecnologia de explorac@o offshore devido ao sempre crescente compri-
mento dos condutos de transporte que ligam as cabegas de pogo as plataformas de produgdo.
Nesses condutos, o padrio de escoamento mais freqiiente € o padrdo intermitente em “golfada”
ou slug, caracterizado por uma distribuic@o axial intermitente de liquido e gds. O gds € trans-
portado como bolhas entre golfadas de liquido.

O padrido em golfadas pode mudar em determinadas condicGes geométricas e de es-
coamento e originar um fendmeno indesejdvel conhecido como intermiténcia severa (severe

slugging)[1].

A intermiténcia severa ocorre geralmente num ponto com uma cota baixa na topografia
do conduto; por exemplo, num trecho de tubulacio descendente, seguido de um trecho as-
cendente ou riser. Uma situacdo comum € quando o condutor possui trechos com diferentes
inclinac¢des devido ao relevo (hilly terrain), onde o comprimento de cada fase alterna-se trecho
a trecho devido ao actimulo de liquido nos pontos mais baixos (vales) e de gs nos pontos mais
altos (picos) [2]. Dependendo do comprimento e da quantidade de secBes, essa variagcdo de
dngulos pode tornar possivel que ocorra a geragdo de intermiténcia severa. Vazdes baixas sdo
também um pré-requisito para que o fendmeno aconteca, pois a baixas vazdes, as forcas gravi-
tacionais dominam o escoamento, permitindo que o liquido que ocupa o riser e o vale bloqueie
completamente a passagem do gés.

A intermiténcia severa estd associada com grandes oscilagdes de pressdo e problemas de
dimensionamento nas unidades de separacdo primdria, podendo provocar paradas na produgio
com conseqiientes perdas econdmicas. Segundo Wordsworth et al (1998), a empresa Petrobras
tem reportado vérios casos de ocorréncia de intermiténcia severa nos sistemas linha-riser, os
primeiros deles no periodo compreendido entre 1984 e 1985.

No presente trabalho, serd utilizado um modelo proposto por Y. Taitel, O. Shoham € J.
P. Brill (1990) para predizer a ocorréncia da intermiténcia severa em um conduto de geometria



simples. O modelo serd explicado, bem como a elaboragdo do software gerado utilizando-se a
ferramenta MatLab [5]. De posse do modelo, serfo analisados dois casos-exemplos: um em que
o sistema mantém-se estivel, decorrendo em escoamento permanente € outro em que ocorre a
intermiténcia severa.
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1 REVISAO BIBLIOGRAFICA E METODOLOGIA

Para melhor compreender o fendmeno de intermiténcia severa e para efetuar a escolha
de um modelo, foi feita uma pesquisa em relagdo aos modelos j4 propostos e também em rela-
cdo as formas tipicas para lidar com escoamentos multifasicos.

A escolha pelo modelo proposto por Taitel (1989), deu-se essencialmente por sua ra-
zoével flexibilidade e por exibir resultados de interpretag@o simples em comparagdo com outros
modelos pesquisados, vide referéncias [6] e [7] como exemplos.

Ao longo desta etapa, o modelo para andlise da geracdo de intermiténcia severa serd
exposto e explicado.

1.1 Padroes de escoamento

Antes de introduzir-se o modelo convém citar as caracteristicas dos principais padrdes
de escoamento, pois, como dito anteriormente, em escoamentos multifdsicos € comum que
modelos de transferéncia de calor, queda de pressdo e transferéncia de massa sejam definidos a
partir do padrdo em que o escoamento se encontra.

=)
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0, 5,0 > Gt
| A~ L ALA ué:ﬂ:: :-‘ ‘-.:'
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(a) Padrdes na horizontal (b) Padrdes na vertical

Figura 1.1: Representagé@o dos tipos mais comuns de escoamento, Collier (1972).

As classificag@o mais comum é [8]:

Bolhas - padrio para baixa vazdo de gis em que a fase gasosas mantém-se dispersa em
forma de bolhas no interior da fase liquida.

Estratificado - padrdo que ocorre para escoamento horizontal e possivel para baixas
inclinagbes da tubulagdo. O liquido, mais denso, mantém-se na parte inferior da tubulagdo. A
interface entre as fases pode ser lisa ou ondulada.
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Intermitente - divide-se em dois subtipos, sendo um o de bolhas alongadas e o outro o
de golfadas. Esses padrdes surgem a partir dos anteriores, quando aumenta-se o fluxo de gés.
Em ambos o gés passa a fluir de forma intermitente com a fase liquida. Quando o fluxo € ver-
tical ou quase vertical, hd ainda o padrdo de transi¢do (churn), um padrdo de transi¢do entre o
padrio de golfadas e o padrio anular.

Anular - quando a vazio de gés torna-se ainda maior em relagdo a fase liquida, tem-se
o padréio anular, em que forma-se um filme de liquido em torno do gés, que escoa pelo centro.
Quando o escoamento se d4 através de um riser pode ocorrer, devido & agdo da gravidade, a
reversdo do fluxo do liquido.

Outra forma mais simples e menos detalhada de classificagdo € dividir entre padréo sepa-
rado (estratificado liso, ondulado e anular), intermitente (golfada, bolhas alongadas e transi¢éo)
e disperso (bolhas).

1.2 O ciclo de intermiténcia severa

Como j4 citado, a intermiténcia severa é um fendmeno fortemente depende da geometria
da tubulacdo pela qual as fases liquida e gasosa escoam e também da relagio entre as vazdes.
De modo geral, o fendmeno ocorre quando se tem uma baixa vazéo de liquido e diferengas de
cotas entre diferentes trechos de modo que, quando o liquido inicia sua asceng¢do pelo riser, o
mesmo acaba bloqueando por completo a passagem de gds. Em determinado momento, a fase
gasosa rompe o bloqueio, levando a grandes variacdes nas quantidade de liquido e de gas.

BUBBLE OR
sLua FLOW

Figura 1.2: Escoamento permanente através de um riser, Taitel (1986).

A figura 1.2 mostra uma situagio de escoamento permanente que ocorre quando o gés,
ao invés de empurrar o liquido para o trecho seguinte em um curto intervalo de tempo, passa
a escoar no padrdo de bolhas. As condi¢Ges para que ocorra esta condigdo estdvel ao invés da
intermiténcia severa, descrita a seguir, é tema de discussdo em seg¢do posterior.

A figura 1.3 mostra a evolugao do ciclo [1].
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(c) Penetracio de gis (blowout). (d) Retorno do liquido.

Figura 1.3: O ciclo de intermiténcia severa, Taitel (1986).

Inicialmente (fig. 1.3a), devido a agfio da gravidade, o liquido acumula-se no vale e
bloqueia o fluxo de gds. Conforme o liguido acumula-se na coluna devido & saida do gés pre-
sente, a pressdo hidrostética sobre a base aumenta comprimindo o géds no pipeline e gerando
uma regido de acumulag@o de liquido. Tal processo é conhecido como formagéo de slug.

A seguir (fig. 1.3b), conforme o gés da coluna escoa, o liquido alcanga o topo e a pres-
sdo exercida sobre a base alcanca seu méximo. Esse é o processo de produgio de slug.

A manutengdo do fluxo de gds e a saida de liquido pelo topo, levam ao recuo da frente
de acumulagfio de liquido no trecho descendente (fig.1.3c). Consequentemente, gds passa a pe-
netrar na coluna.

A entrada de gds na coluna leva a uma redugdo da pressdo que, por sua vez, leva a
uma expansdo do gés. Essa iteragdo entre o escoamento estratificado no pipeline e escoamento
intermitente/anular no riser leva 2 violenta expulsdo do gés da coluna, seguida de forte descom-
pressdo o qual entdo reinicia o processo de formagio de slug. Tal processo € conhecido como
expulsdo de gés (fig. 1.3d).
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Na condi¢éo de intermiténcia severa, tal processo repete-se periodicamente.

1.3 O modelo do pipeline

O modelo escolhido para o pipeline € o proposto por Taitel et al. [4], um modelo ela-
borado para os casos em que o escoamento é¢ dominado pela gravidade e, conseqiientemente, a
distribui¢do do liquido e do gds dentro da tubulagéo é dominada pelas pressdes hidrostaticas.

1.3.1 Teoria do modelo

Para elaborag@o do modelo, serd considerado o sistema descrito pela figura 1.4. Como
“secdo” serd entendido o conjunto formado por uma descida e por um riser, nessa ordem.

Figura 1.4: Sistema-modelo utilizado e suas varidveis, Taitel (1990).

As varidveis do problema sdo:

* S1,89,...,8,: comprimentos dos trechos ascendentes.

e l1,la,...,1l,: comprimentos dos trechos descendentes.

* T1,%3,...,T,: alturas do liquido nos trechos descendentes.

* 21, %,..., %, alturas do liquido nos trechos ascendentes.

* 71,2 -- -, Yn: inclinacdes com relacdo a horizontal dos trechos ascendentes.

* (1,82, .., B inclinagdes com relagdo a horizontal dos trechos descendentes.

* p;: pressao da secdo ¢.
* mg,: massa de gds na secdo ¢.

¢ my,: massa de liquido na secéo :.
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e ¢;: fragdo de vazio na secio 7.
* pii=1—¢
o A: 4rea da segdo da tubulagdo, suposta constante em todas as dedugbes que viréo.

* R: constante do gds, equivalente a constante universal dos gases dividida pela massa molar
do gés.

O modelo parte da hipé6tese de que as velocidades do liquido e do gés sdo baixas a ponto
de as perdas de pressdo por causa do atrito poderem ser negligenciadas. Tal situagdo ocorre
quando, por exemplo, um determinado pogo estd depletado a ponto de a diferenca de pressdo
entre a saida do BOP e a entrada do separador primdrio ser pequena, levando a um escoamento
lento.

Uma vez que se saiba a quantidade de gés e liquido em cada vale e pico, as equagdes
que descrevem o problema podem ser resolvidas. O ponto € que estas variam conforme o tempo
j& que ocorre entrada de gés e liquido na primeira se¢@o. Supondo esses fluxos massicos como
conhecidos, bem como a pressdo inicial em todo o sistema e a pressdo na saida, as equagdes
podem ser divididas em trés grupos que representam cinco casos e dois subcasos, 0s quais serdo
descritos a seguir.

1.3.1.1 Casol

O primeiro caso, considerado o “caso normal” acontece quando a se¢@o encontra-se na
situacdio em que z; # 0 e z; < s;, ou seja, a frente do liquido na se¢do ainda ndo alcangou o
pico, nem a frente de gés chegou ao vale, como mostrado na figura 1.4. Nesse caso, as equagGes
que regem o sistema sdo:

%[(ll - QJ@)A + (Si—l . Zi_l)A] = Mg (11)
pr(z; + 2i)A = my,, (1.2)
pi = Pit1 + prg(z; seny; — z; senf;) (1.3)

As equagdes (1.1) e (1.2) nada mais sdo do que balangos de massa para o gis e para o
liquido. A hipétese adotada para o célculo da densidade do gds € que este seja gds ideal, ou
seja:

_ b

A equacdo (1.3) é resultado do célculo das pressdes hidrostiticas do liquido.

Para a situagfo do caso normal, tém-se como incégnitas a pressdo e as alturas do liquido
na descida e na subida, ou seja, p;, z; € 2;. No inicio do problema, para o caso da figura, isso
equivale a um sistema nfo-linear de nove equagdes e nove incégnitas. O método de solugdo
serd descrito, por conveniéncia, na se¢do 1.5 "Programa Computacional”.



15

1.3.1.2 Caso?2

O caso considerado como “Caso 2” ocorre quando, partindo da situa¢do do caso 1, temos
que o liquido alcanga o pico antes da frente de gds alcangar o vale, como mostrado na figura
1.5. Em termo das varidveis, isso equivale dizer que temos z; = s;.

Figura 1.5: Caso 2 - liquido sendo transferido para se¢io seguinte, Taitel (1990).

As equagdes a serem resolvidas sdo as mesmas do caso 1, porém com a alteragdo de
quais s3o as incégnitas. Nessa se¢éio, conhecemos a altura do liquido na subida (z;), porém
desconhecemos a massa de liquido da segdo (my,) e, por conseqiiéncia disso precisamos, ao
conhecer my,, atualizarmos a massa de liquido da se¢do seguinte, my, ,. Esta por sua vez
também pode passar liquido para a secdo ¢ + 2 e assim por diante. Tudo isso foi levado em
conta na elaboragdo do modelo computacional (segdo 1.5).

1.3.1.3 Caso3

z

O caso considerado como “Caso 3” € o que lida com a outra possibilidade de evolugédo
do caso 1. Quando, ao invés de o liquido alcangar o pico antes da frente de gés alcancar o vale
(Caso 2), ocorre 0 oposto, ou seja, 0 gds passa a penetrar a coluna enquanto a frente de liquido
ainda ndo alcangou o topo, vide figura 1.6. Em termos préticos, temos z; = 0 enquanto z;
permanece desconhecido.

Figura 1.6: Caso 3: gds misturando-se ao liquido na subida, Taitel (1990).
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A entrada de gds na secdo de subida ainda preenchida com liquido nos leva a dois passos
para a evoluggo dessa situagio. Na se¢fo 1.5 esses dois passos estdo descritos como casos 3.1 e
3.2.

No caso 3.1, devido ao fluxo de gés que penetra a coluna temos o aumento da fragdo de
vazio ¢; dentro do riser até que esta atinja seu mdximo. Durante esta etapa, nio hd saida de gds
da coluna para a se¢do seguinte. As equacdes (1.5), (1.6) e (1.7) regem o que ocorre.

i i + Di
-}%; [LLA + (Si—l - 27;_1)14] -+ 3'2——1%%;:1142561; = Mmg; (15)
pLoiziA = mg; (1.6)
Di — Diy1 = ZiPLIP; seny; 1.7

onde ¢; =1 —¢;.

A pressdo, a altura do liquido no riser e a fragdo de vazio sdo as incégnitas durante essa
etapa. Nominalmente, p;, 2; € ¢;.

Como dito, a evolucdo desse caso 3.1 dd-se com o aumento do valor de ¢; até um valor
€maz» O qual pode ser um dado empirico ou obtido através de modelos. Taitel [4] sugere para
o sistema 4gua-ar o valor médio €., = 0.8 como uma boa aproximacio, mas salienta que tal
valor varia com a press@o podendo oscilar 0.7 € 0.9.

Ap6s chegar a essa situagdo teremos as mesmas equagdes a serem resolvidas, com a
simplificagfo de ¢; deixar de ser varidvel, ou seja, pode-se obter a altura do liquido e a presséo
no trecho diretamente das equagdes.

Usando a equagdo (1.6) podemos obter z;; de posse deste, p; pode ser obtido através da
equacdo (1.7) e com estes obtermos mg, usando a equagdo (1.5). Neste momento, a massa de
gds na se¢o 7 € na seguinte tornaram-se incégnitas, pois o gas passou a ir para a se¢éo ¢ + 1.

1.3.14 Caso4

O caso o qual serd tratado como caso 4 é o que ocorre quando temos z; = s; € a frente
de gé4s alcanga o vale (z; = 0) sendo que o escoamento do gés através do riser é estdvel, vide
figura 1.7. Quando essas trés condi¢des sdo alcangadas (o critério de estabilidade serd discutido
adiante), teremos novamente uma situacio que se desenvolve em duas etapas.

Caso 4.1 é a etapa que ocorre enquanto a fracdo de vazio ainda ndo atingiu seu valor
maximo. Nessa condi¢do, tém-se como incégnitas p;, my, € ¢;.

As equagdes que regem o problema sdo, novamente, as equagoes (1.5), (1.6) e (1.7).
De forma similar a relagdo entre os casos 1 e 2, aqui a diferenca € o fato de termos z; = s; €
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Figura 1.7: Caso 4: fluxo estdvel na subida, Taitel (1990).

desconhecermos as massas de ligiiido na segfo, bem como o quanto € transferido para a segéo
seguinte.

A secdo saird do caso passando ao caso 4.2 quando €; = €4, Nesse momento, todo o
gds e liquido que entram na segdo sdo transferidos para a se¢do seguinte mantendo assim todos
0s pardmetros constantes.

1.3.1.5 Caso5

O caso 5 é o que ocorre quando hd um blowout, ou seja, uma grande golfada de fluidos
para se¢do seguinte, com uma parcela do liquido retornando. E o estado quando se tem a
mesma situagio do caso anterior (2; = s; € z; = 0), mas o sistema prova-se instdvel. O modelo
considera que se sabe o quanto de liquido retorna apés cada golfada, o que normalmente se
obtém empiricamente. Uma outra possibilidade é, uma vez conhecendo todos os demais dados,
utilizar esse mesmo modelo para se estimar o quanto de ligiiido estd retornando. Uma vez
conhecidos todos os parAmetros, as equagdes que regem o sistema sdo:

prdisiA(l — €) = my, (1.8)
my,.
= 2; = 0.5—— 1.9
T; =2 oA (1.9)
Pi [(ll s IZ)A + (Si—l i Zi_l)A] =Mmgqg, (11)

R

As equagdes nada mais representam o estado na segdo apls o blowout. Considera-se

que o liquido se distribuird uniformemente entre a subida e a descida. Tal fato € representado
pela equacgdo (1.9). A figura 1.8 mostra a se¢do apds 0 processo.

1.3.1.6 Analise de estabilidade do sistema

Como dito anteriormente, uma vez que o liquido atinge o topo do riser e a frente de gds
chega ao fundo do vale (z; = s; e z; = 0), faz-se necessdrio avaliar se o gés ird empurar uma
grande quantidade de liquido para a préxima secdo de uma vez ou se penetrard aos poucos na
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Figura 1.8: Caso 5: Pés-blowout, Taitel (1990). |

se¢do. Nominalmente, se ocorrerd caso 5 ou o caso 4.

Para se iniciar a andlise, serd considerado o caso em que tanto a se¢fio anterior, como a
secdo seguinte encontram-se no caso 1, e que a primeira bolha de gés comeca a penetrar o riser,
conforme a figura 1.9.

Figura 1.9: Varidveis para a andlise de estabilidade, Taitel (1990).

A pressdo na base da coluna de liquido € dada por:

liy1 — ZTina
i1 — Tig1 — €Y + ATy
(1.10)
Na equagdo, o primeiro termo corresponde a pressdo exercida pelo gds que penetra a
secdo, enquanto o dltimo termo representa a pressdo exercida pelo gés da se¢o seguinte. O
termo do meio nada mais é que a pressdo da prépria coluna de liquido.

li+si-1— 21
L+ 8i-1 — 21 + €'y — Az

P=p — pLgP; seny; (Si = y) —pi+1l

A equagio (1.9) mostra que, conforme a bolha penetra a coluna (aumento de y) devido
a expansdo (considerada isotérmica) do gds, P diminui. Por outro lado, P aumenta com o mo-
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vimento de z;_; representado por Az;_;. O oposto ocorre na segdo i + 1. A pressio por parte
da coluna de liquido é diretamente proporcional a y.

A condigio de estabilidade para que o sistema seja estdvel € que a pressdo P aumente
conforme o gds se expande, em termos matematicos:

— >0 (1.11)
Para se chegar ao critério de estabilidade, sdo utilizadas as seguintes hipéteses:

a) Todas as se¢bes, com excegdo da se¢do 4, estio em equilibrio hidrostético durante a expansio
espontdnea do gés.

b) Para obter uma condicdo inferior (lower bound), assume-se que o liquido 2 montante e a
jusante ndo se movem.

c) Para obter uma condicfio superior (upper bound), assume-se que todas as variagGes & mon-
tante sdo iguais entre si, ou seja, Az;_; = Az;_p = ... = Az;; a mesma hipétese € utilizada
em relagdo as variagBes 2 jusante, ou seja, Aziy; = Azip = ... = Azy.

Utilizando-se essas simplificages e realizando-se os célculos necessdrios, obtém-se:

pi+1€' (1 = Ki—H)
li+1 — Tit

212 . pi€’ (1 . Ki—l)
Oy li+si1— 2z

+ prgo; seny; — <0 (1.12)

A equagio (1.12) é a condicdo de estabilidade. A condicdo inferior € obtida quando se
utiliza K;_; = K;.; = 0. Para a condic@o superior, estes termos sao calculados do seguinte
modo:

1
li+8i—1 — 21
Di
prg (senfi1 + seny;—1)
1
liv1 — Tin
Pi+1
prg (senfiy1 + senyi+1)
As equagdes (1.13) e (1.14) consideram que tanto a se¢do ¢ — 1, quando a se¢do ¢ + 1
estdo no caso 1. Para o caso 2, basta ignorar os termos que contenham sen-y.

K=

(1.13)

1+

Kiy1 = (1.14)

1+

Outro ponto a se observar é que para a primeira se¢do K;_; é sempre nulo, enquanto
que K, é sempre nulo para a dltima segdo.
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1.4 Caracteristicas do modelo

Antes de discutir-se a solugfio do problema, convém apontar algumas caracteristicas do
modelo.

O modelo possui como condi¢des de contorno o conhecimento de todas varidveis de
todas as segOes no instante inicial, além de considerar que, em qualquer instante do tempo,
sabe-se o valor da massa de gés e ligitido que adentra a primeira segdo, bem como o conheci-
mento da pressdo ao final do dltimo trecho.

Para melhor simular um sistema de pipeline - riser, o separador e sua pressdo podem ser
substituidos pelos dados de um simulador especifico para risers, como o produzido por Balifio
(2010).

O modelo calcula somente condi¢des médias em cada se¢éo, ele ndo € capaz de classifi-
car e caracterizar localmente cada ponto da tubulagfio. Se, por exemplo, o0 modelo aponta que o
riser estd no caso 4, isso significa que o escoamento pode ser anular ou bolhas e, caso haja uma
inclinagio suficientemente pequena, escoamento estratificado

Trocando-se as densidades do liquido e do gds por valores calculados através de equa-
¢Bes de estado, pode-se aumentar fortemente o leque de condiges que o programa € capaz de
simular. O custo é grande aumento no tempo de simulacio e na complexidade da programagéo.

A possibilidade de se determinar um nimero qualquer de segdes, bem como variar suas
caracteristicas, permite analisar um grande nimero de situag3es.

Outro fator necess4rio, caso se queira utilizar o modelo, € modelar ¢,,,, ou seja, a fragéo
de g4s mdxima para cada trecho do riser em fungéo da pressdo e também obter o quanto retorna
para a se¢do apds a golfada.

1.5 Programa computacional

O método de solugio consiste essencialmente em, para cada instante discreto no tempo,
avaliar em qual caso cada se¢fo se encontra, gerar um sistema néo-linear de até 3 x N equagdes,
onde N é o nimero de se¢des, € resolvé-lo.

Para se saber o quanto convergiu, calculou-se a variagdo da pressdo em cada se¢éo ao
longo das iteragdes e estabeleceu-se um valor minimo.

Um outro método de controle, para saber o erro acumulado ao longo do tempo, € calcular
se a massa total do sistema se mantém igual & inicial mais o a diferenga entre acrescido na
primeira secdo e o que foi enviado ao separador pela tltima segfio. Para tanto, € necessério
manter-se um controle do quanto o separador recebeu.



1.5.1 Caso1l

Incégnitas: p;, z;, 2;
Equacdes bésicas:

RT
Di[li + Sim1 — T — 2im1] = Mgy - A

prA (z; + $i) = my;

Di — Dit1 = Ziprg Seny; — T;prg senp;

Solucio
a) Estima-se um chute inicial de p; € p;+1;

b) Obtém-se z; através da relagéo:

_ 1 (mLi seny;  Pi — pi+1>
seny; + senf; \  pré pLg
c) Obtém-se z; através da relagdo:
1 < mr, senf; | Pi — Pir1 )
sen?y; + senf; prA PLy

d) Calcula-se a press@o na se¢io:

RT X
pi=mgi-— [li+ 81— T — 2-1)

A

1.52 Caso2(z = s;)

Incégnitas: p;, z;, my;
Equacdes bésicas:

RT
D [li + 81 — T — 2i—1) = Mg+ a1

prA (z; + 8;) = my;

Di — Pit1 = S;Prg seny; — x;prg senf;
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(1.1)

(1.2)

(1.3)

(1.15)

(1.16)

1.17)

(1.1)

(1.2)

(1.3)




Solucio
a) Estima-se um chute inicial de p; € p;+1;

b) Obtém-se z; através da relagdo:

_ Siprgseny; — p + Pit1
' pLg senf;

¢) Obtém-se o quanto do liquido ird para a préxima se¢ao:

Amyp, = prA(z; + si) — My

d) Calcula-se a nova massa de liquido na se¢@o:

mr, =myg, +Amyg,

e) Calcula-se a pressdo na segéo:

RT
Di = Mg * A [l + 8i1 — % — 2i-1)

f) A massa de liquido da segdo seguinte ¢ atualizada:

MLy, =MLy, — Amy,

i

1.5.3 Caso03.1(z; =0)
Incégnitas: p;, 2;, @;

Equacdes bésicas:

% [ltA + (Si_]_ — Zi_l)A] + &‘;z—pziﬂAzzE, = Mg,

preiziA =my,

Di — Di+1 = Z,PLgP; seny;

Solucio
a) Estima-se um chute inicial de p; € p;11;

b) Obtém-se ¢; através da relacdo:
mr,

%= zipLA
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(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.5)

(1.6)

1.7

(1.23)



¢) Obtém-se z; através da relagéo:

_ Di — Pina
¢ipLg seny;

d) Calcula-se a pressdo na segio:

A G 2

-1
Di = <Ezm = MT%‘H) . (ﬁ(l—;@ +1li+si1— zi—l)

e) A secio mantém-se nesse caso até €; = €mq, oOnde € = 1 — ¢.

1.54 Caso3.2(z; =0, €6 = €maz)

Incégnitas: p;, 2z;, Mg,

Solucdo

a) Obtém-se z; através da relagdo:
my,.

1

pLA(]- - Ema.:::)

Z; =

b) Calcula-se a pressdo na se¢do:
Pi = Pir1 + 2i(1 — €maz)pLg SENY;
¢) Obtém-se o quanto do gés ird para a préxima segéo:

Di + Di+a AZ,

(l; + 8i-1 — 2ic1) + —50— SRT €maz

A
RT

d) Obtém-se a nova quantidade de gds na secdo atual:

A'rnG, = Pipsm

mg, = Mg, + Amg,

e) Obtém-se a nova quantidade de gds na se¢do ¢ + 1:

Mg, = MG — AmGi

1.55 Caso4.l1(z; =0,z =s;)

Incégnitas: p;, my,, ¢;
Equagdes bdsicas:

RT [ 2RT

prLdisiA =my;

Di —Diy1 = 8:pLgP; seny;

LA+ (si1 — 2 ) A] + BEPHL e — e,

— mGi
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(1.24)

(1.25)

(1.26)

1.27)

(1.28)

(1.29)

(1.30)

(1.5)

(1.6)

1.7)



Solucio
a) Estima-se um chute inicial de p; € p;41;

b) Obtém-se ¢; através da relacdo:
__ bi —Di1
gy = DBl
SipPLg seny;

¢) Calcula-se a pressdo na se¢io:
RT 5(1— ¢ 5i(1 — ¢ -
P = (_A_mGi = -"(—2_)'pi+1> : (—(7—) +li+si-1— Z¢—1)
d) Obtém-se o quanto do liquido ird para a proxima se¢@o:
Amp, = pLAsip; — My
e) Calcula-se a nova massa de liquido na se¢do:

mrp, =mp,; + AmLi

f) A massa de liquido da secdo seguinte é atualizada:

Mp, ., =ML, — Amy,

T

g) A secdo mantém-se nesse caso até €; = €pqz, onde € = 1 — @.

1.5.6 Caso4.2 ({L‘,,, = O, Z; = 8;, €= 6ma,ac)

Incégnitas: p;, my,, Mg,

Solucdo
a) Calcula-se a pressdo na se¢ao:

Pi = Pir1 + 8i(1 — €mas)prg SENY;
b) Obtém-se o quanto do gés ird para a préxima segao:

pi + Pi+1A

by Sgp=n2i=
(L + 8i-1 — 2i—1) + SRT

AmGi Si€maz — MG,

A
= piﬁf
¢) Obtém-se a nova quantidade de gés na se¢do ¢ + 1:

Mg, = Mgy, — Amg,
d) Obtém-se o quanto do liquido ird para a préxima segio:
Amy, = prAsi(1 = €mas) — ML
e) A massa de liquido da se¢do seguinte é atualizada:

MLy =MLy — AmLi
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(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)
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1.5.7 Caso5 (z; = z;)

Incégnitas: p;, my,, ®;
Equacdes bésicas:

prdis;A(l — €) = my, (1.8)
my,.
;=2 = 05— 1.9
oA (1.9
Di 4, — 2) A+ (sie1 — 2-1)A] = ma, (1.1)

RT
Solucao
a) Calculam-se todas as grandezas diretamente das relagdes.

b) Calcula-se o quanto de liquido foi para a segéo seguinte. O modelo exige que o préprio
usudrio defina essa quantidade. Taitel (1990) utilizou o valor de 20% em seus exemplos.
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2 RESULTADOS E DISCUSSAO

Ao longo deste capitulo, dois casos-exemplos serdo analisados. A partir de seus re-
sultados, uma anélise acerca do mecanismos gerador de intermiténcia serd feita. Ambos sio
escoamentos dgua-ar em tubulagdes com trés sec¢des, cujo didmetro € 1 polegada.

2.1 Condicéo 1: Regime estavel
As caracteristicas do problema sao:
- Velocidade superficial do liquido ur; = 0.1 m/s.
- Velocidade superficial do gds em condi¢des atmosféricas ug,, = 0.1 m/s.

- Pressdo no separador igual a pressdo atmosférica.

- | =5=>50m.
- [ = =45 graus.
- €maz = 0.8,

- Todas as secdes estdo inicialmente a pressdo atmosférica e preenchidas metade por gés,
metade por liquido (z; = z; = 25).

2.1.1 Analise dos resultados

Inicialmente, todo o sistema se encontra no caso 1; logo, a tinica se¢do com aumento
nas massas de gis e liquido € a primeira, o que a leva a ter rdpida elevagc@o da pressdo, bem
como a uma subida do liquido em ambas dire¢des. Além disso, hd aumento da pressdo nas
outras se¢Ges devido ao gés estar se comprimindo para permitir que o liquido da primeira se¢é@o
se eleve. Como o gds absorve parte da energia transferida ao aumentar sua densidade, o efeito
do aumento da pressdo na primeira se¢fo € diluido e tem seu efeito bastante reduzido na secéo 3.

Quando ¢ ~ 300s, a sec@o 1 entra no caso 2 e passa a enviar liquido para a segfo se-
guinte. Logo que isso ocorre, hd uma inversdo na tendéncia de queda do liquido na descida
da secdo 2 (z, passa a aumentar), que passa a ver sua pressdo elevar-se a uma maior taxa de
variacdo.

Em torno de ¢ = 600s, € a vez do liquido da se¢do 2 chegar ao topo do riser (caso 2) e
da secéo 3 sofrer um aumento vertiginoso na pressdo. Ainda assim, a pressio na primeira se¢do
mantém-se maior, pois € esta a qual recebe continuamente os fluxos méssicos de 4gua e de ar.

Em ¢ =~ 900s (15 min), as trés se¢Oes passam a estar no caso 2 €, com isso, a frente
de gds na primeira secdo passa a se aproximar do vale (reducéo de ;). A razdo disso € que o
gés passa a empurrar uma quantidade maior de liquido para a se¢@o 2 que, por sua vez, oferece
menos resisténcia ji que esta também estd transmitindo liquido para a se¢do 3, a qual repete o
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Figura 2.1: Solugdo do problema em regime estavel.

padrdo, retransmitindo o liquido para o separador (p; € p3 se mantém constantes).

Para ¢ = 3100s (= 52 min), a primeira se¢do entra no caso 4.1 e passa a estocar gds na
forma de bolhas, enquanto libera liquido que entra para a se¢@o seguinte. O principal motivo
de, nesse caso, o sistema ser estavel estd no fato de nao haver diferenca entre [ e s, impedindo
grandes gradientes de pressdes entre as duas fases. Caso houvesse alguma diferenca considera-
vel, como veremos na andlise seguinte, a for¢a exercida pelo gés da secfo seguinte teria efeito
desestabilizador suficiente.

O padrdo da primeira secdo repete-se para as demais que, com a adi¢do de liquido da
primeira se¢@o para a segunda e, posteriormente, da segunda para a terceira, passam a também
acumular liquido somente no riser gragas ao aumento da pressdo do gds em contato com as
sessdes anteriores.

Por fim, nota-se que quando ¢ = 10000s (= 2h45min), todas as se¢des estdo no caso
4.2, ou seja, estdo em regime permanente e apenas transmitem ao separador os fluxos massicos
de gds e dgua que recebem através da entrada da primeira se¢@o.
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2.2 Condicdo 2: Regime instavel

As caracteristicas do problema séo:
- Velocidade superficial do liquido u;; = 0.1 m/s.
- Velocidade superficial do gds em condi¢Ges atmosféricas ugg, = 0.1 m/s.
- Pressdo no separador igual a pressdo atmosférica.
- 1 =300m, s = 50m.
- B = 6.8graus, v = 45 graus.
- €maz = 0.8.
- 20% é a quantidade de liquido que resta em uma dada se¢do aps a mesma sofrer um blowout.

- Todas as secBes estdo inicialmente 2 pressdo atmosférica e preenchidas metade por gés,
metade por liquido (z; = 150, z; = 25).

2.2.1 Anadlise dos resultados

Inicialmente, temos novamente todas as segdes no caso 1 e o comportamento € bastante
similar, inclusive para os instantes em que cada segdo v€ o liquido alcangar o topo do riser.

As diferengas comegam a se tornar mais claras em relagdo ao comportamento no géas no
trecho de descida. Devido ao valor de [ ser seis vezes o de s, demora-se um tempo muito maior
para a frente de gds chegar ao vale e, quando isso ocorre em ¢ ~ 17500s (= 5h), o que se vé é
um blowout na primeira segdo. Vale notar que as pressdes e alturas do liquido na descida ()
sdo praticamente as mesmas da anlise anterior.

Apés a expulsdo do liquido, as pressGes na segdo 1 e em sua jusante se tornam quase
iguais, com a primeira decrescendo e a segunda aumentando. Tal fato ocorre porque h4 uma
grande e repentina transferéncia de liquido e de gds de uma se¢@o para a outra. A secdo que
fornece a massa (se¢do 1) perde entdo pressdo. Com o aumento da pressdo, z, sofre grande
retracdo, mas nota-se que a secdo 3 permanece inalterada gragas ao fato de haver uma grande
quantidade de g4s ainda pouco comprimido. Em um caso real, a se¢iio 3 também sofreria algum
efeito, mas o modelo ndo considera tal fato quando modela o blowout.

Em ¢ = 28000s (= 8h), a se¢do 1 novamente tem um blowout, aumentando novamente
a pressao em 2, que passa a formar um slug.

No terceiro blowout t ~ 40000s (=~ 11h), as trés se¢des participam empurrando uma
grande quantidade de liquido diretamente para o separador que, em um caso real, o qual pode-
ria ter uma faixa de operacdo delimitida forgando assim a necessidade de se parar o recebimento
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Figura 2.2: Solu¢éo do problema em regime instdvel.

de liquido e gas até o sistema voltar ao estado inicial. A se¢@o 3 é afetada pelo fato de a pres-
s30 nas sec¢des anteriores ter aumentado a densidade, que ja ndo varia mais tdo facilmente para
absorver a energia lancada a frente.

Com o blowout das trés segdes, todas entram novamente no caso 1, mas a situacdo nao
€ exatamente como a original, o que se nota pelo menor tempo necessdrio para que ocorra um
blowout total do sistema pela segunda vez em ¢ = 70000s (= 19h30min).
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CONCLUSOES E CONTINUACAO DO TRABALHO

O fen6meno de intermiténcia severa depende fortemente da geometria do conduto e,
como é comum aos processos que envolvem escoamento multifdsico, possui solu¢do complexa
e s6 pode ser analisado através da implementagé@o de c6digos numéricos.

Através de um modelo ndo muito complexo foi possivel analisar o caso de escoamentos
em que a velocidade é baixa o bastante a ponto de poder ser tratado como quase-estatico, assim
viabilizando-se descrever o escoamento utilizando-se apenas os conceitos de pressdo hidrosta-
titca e de balango de massa.

Ao analisarem-se os resultados, pode-se concluir que ao aumentar-se a diferenca entre
o comprimento do trecho de subida e o de descida, maior é a probabilidade de o regime de
escoamento tornar-se instdvel e ocorrer intermiténcia severa. A mesma relagdo de causa-efeito
existe quanto ao fluxo de entrada na primeira se¢éo, o que favorece a ocorréncia de intermitén-
cia conforme € reduzido.

Em relagéo ao comprimento das se¢des, nota-se que influenciam os tempos de formagéo
e produgdo de slugs, mas que ndo afetam de modo geral o comportamento do sistema. Porém
convém salientar que isso € verdadeiro em relacdo ao modelo escolhido, mas em um caso real
como os que ocorrem na industria de petréleo, nos quais o riser da tltima se¢éo estende-se por
um comprimento muito maior que os demais, a hipdtese inerente ao modelo de que o valor
médio da fragfo de vazio € uma boa aproximacfo dessa grandeza em qualquer ponto do riser
deixa de ser vélida.

Quanto ao nimero de se¢Oes, conclui-se que um aumento do mesmo acarreta em maior
tempo necessério até que ocorra expulsdo de gés (fig. 1.3d) simultaneamente em todas as se-
¢Oes, com o porém de que a massa de fluidos expelida para o separador também serd maior em
uma relagdo de proporcionalidade direta com o niimero de secdes.

De modo geral, hd muitas maneiras de se tornar o c6digo mais genérico, sendo que as
escolhas mais simples para comecar-se sdo a adicdo de uma equacgdo de estado que relacione a
variagdo da densidade do gds com a variacdo da pressdo e a utilizagdo de algum modelo para a
fracdo de vazio méxima.

Por fim, tem-se a avaliagio de que o presente modelo funciona como uma boa introdugéo
em busca de compreender-se como a intermiténcia severa pode ser gerada pelo terreno, além
de poder ser utilizado para testar modelos mais complexos quando utilizados para prever as
caracteristicas de escoamentos a baixas velocidades.
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